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We investigate the properties of adaptive walks on an uncorrelated fitness landscape which is established in
sequence spaces of complex structure. In particular, we perform numerical simulations of adaptive walks on
random graphs and scale-free networks. For the former, we also derive some analytical approximations for the
density of local optima of the fitness landscape and the mean length walk. We compare our results with those
obtained for regular lattices. We obtain that the density of local optima decreases as 1/z, where z is the mean

connectivity, for all networks we have investigated. In random graphs, the mean length walk L̄ reaches the
asymptotic value e−1 for large z, which corresponds to the result for regular networks. Although we could not

find an exact estimate, we derive an underestimated value for L̄. Unlike random graphs, scale-free networks

show an upper asymptotic value of L̄.
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I. INTRODUCTION

The investigation of dynamical properties of adaptive
evolution performed by populations of self-replicating enti-
ties on rugged landscapes has attracted increasing interest in
the evolutionary biology community �1–6�. It is well estab-
lished that species evolve by increasing their adaptation to
the environment where they live �7,8�. In this sense, Wright
created the metaphor of an uphill climb to the Darwinian
evolution �9�. In the context of rugged landscapes and mak-
ing use of Wright’s metaphor evolutionary optimization is a
permanent search for better local optima of the fitness land-
scape. Long-term evolution is thus best pictured as an adap-
tive walk in a discrete space of sequences. In an adaptive
walk, the optimization process proceeds from an initial entity
toward a local or global optimum of the fitness landscape
through fitter neighbors.

All previous investigations regarding adaptive walks have
been restricted to sequence spaces which are represented as
hypercubes �10–12�. In this formulation, each entity is con-
nected to its one-mutant neighbors. In a binary representa-
tion, each entity has D neighbors, where D denotes the se-
quence size. In the current work, we aim to study the
dynamical properties of adaptive walks in more complex to-
pologies. The main motivation of our approach regards the
fact that not all sequences in genotype space are viable. Ac-
tually, a great amount of mutations are lethal and so a con-
siderable fraction of organisms do not remain viable after
suffering a single point mutation �13,14�. For instance, recent
analysis of experiments in silico shows that up to 93% of
sequences are not viable �13�, and investigations in RNA
viruses show that up to 39.6% of single point mutations have
a lethal effect �15�. Thus, it seems more realistic to ponder
sequence spaces where the node’s connectivity is not the

same for every node, as it is in hypercubes. In that context,
we wish to examine how the topological properties of se-
quence spaces can affect the evolutionary optimization pro-
cess. An interesting question is to know the strength of the
influence of the distribution of connectivities, as well as the
mean connectivity of the network, on the mean length walk
performed by single populations before reaching local op-
tima of fitness landscapes. For this purpose, we investigate
the adaptive process on two distinct topologies: random
graphs �16,17� and scale-free networks �19�. The study of
random graphs is especially interesting because they have
small distance between nodes and low clustering, which is
exactly opposed to those features of regular networks. On the
other hand, scale-free networks interpolate between an or-
dered finite-dimensional lattice and completely random
graphs. We compare our results with those obtained for regu-
lar networks. We restrict our study to an uncorrelated fitness
landscape, where we ascribe at random the fitness of each
node in the sequence space. We focus our analysis primarily
on the special case where the population always jumps to the
most favorable neighbor. The aforementioned algorithm is
referred to as gradient adaptation �2,5,10�.

The paper is organized as follows. In Sec. II we describe
the model together with the different topologies considered
in this work. Also, we derive some important analytical re-
sults for the density of local optima of the fitness landscape
and for the mean length walk. In Sec. III we present the
simulation data and compare the results with our theoretical
predictions.

II. THE MODEL

We consider different network topologies with fixed num-
ber of nodes N and mean coordination number z. The number
of neighbors of a given node i is denoted by ki. In the case of
a regular network, as in a D-dimensional hypercube, the con-
nectivity is exactly the same for all nodes, ki=D, i
=1, . . . ,N. In order to define a fitness landscape we ascribe to
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each node i a fitness value f i� �0,1� which is taken from a
uniform distribution. The set of values f i, i=1, . . . ,N estab-
lishes the fitness landscape. In the simulations, we perform
averages over distinct sets �f i, i=1, . . . ,N� in order to esti-
mate the relevant quantities.

Since the fitnesses f i are uniformly distributed random
variables, the fitness landscape is completely uncorrelated
and holds a high degree of ruggedness. A given node i is a
local optimum when its fitness value f i is greater than the
fitness values of all its neighboring nodes, i.e., f i� f j, j
=1, . . . ,ki. As the fitnesses f i are uniformly distributed in the
interval �0, 1�, the likelihood that a given node i is a local
optimum of the fitness landscape equals f i

ki. We can therefore
calculate the density of local optima of the fitness landscape,
given by

� = �
k
�

0

1

xkP�k�dx , �1�

where P�k� denotes the probability distribution of connec-
tivities.

We initiate the adaptive walk in a randomly chosen se-
quence �node�, and then natural selection will move the
population from this wild-type sequence to the fittest neigh-
boring sequence �2,5,12�. This process is repeated until the
population finds a locally optimum node. Besides the density
of local optima � given by Eq. �1�, we also consider in our
investigation two other relevant statistical quantities: the

mean length walk L̄, which corresponds to the mean number
of steps taken before reaching a local optimum, and the dif-
ference in fitness of the values reached by the population and
the global optimum of the fitness landscape, which we de-
note by �fG. Since it is extremely difficult to find exact
analytical expressions for the mean number of steps, here we

derive an underestimated value for L̄ in the case of random
graphs. Below we describe the different topologies consid-
ered in this work.

A. Regular networks

The genotype space of sequences of size D is most easily
represented as a hypercube where each node in the underly-
ing space represents one entity, and its neighbors are those
entities differing from the first by one mutation �20�. The
number of links is exactly the same for all nodes. In this
situation, the probability distribution is a simple function of
k, P�k�=�k,D, and the density of local optima becomes

� = �
k
�

0

1

xk�k,Ddx =
1

D + 1
. �2�

We see that the density of states decreases as 1/ �D+1�, and
for large D, �	1/D.

The expected number of steps taken in gradient adaptive
walks on regular networks has been estimated by Orr �10�.
Orr has demonstrated that the probability Pn that a popula-
tion takes exactly n steps is

Pn =
n

�n + 1�!
, �3�

and the mean number of steps taken during gradient adapta-

tion L̄ is

L̄ = �
n=1

�

nPn = e − 1 
 1.72. �4�

B. Random graphs

The random graphs were introduced by Erdös and Rényi
about 40 years ago �16�. In this model, each node is con-
nected to any other node with probability p. Such procedure
produces a statistically homogeneous network, in which the
connectivity distribution is Poissonian

Prandom�k� =
e−zzk

k!
, �5�

where z= p�N−1� is the mean coordinate number and corre-
sponds to the relevant parameter of the model.

By substituting Eq. �5� in Eq. �1�, we obtain the following
expression for the density of local optima:

� = �
k
�

0

1

xke−zzk

k!
dx = �

0

1

�
k

�xz�k

k!
e−zdx ,

� =
1

z
�1 − e−z� . �6�

For intermediate to large values of z, we should expect that
the density � decreases as 1/z.

In regular networks, one can use symmetry arguments to

determine the mean length walk L̄ �10�. For random graphs,

we cannot make an exact formulation to obtain L̄ because the
node connectivities are not the same any more. Nevertheless,

we can underestimate L̄ by making the assumption that since
a given node has a neighbor which is a local optimum it
moves to that node. This formulation would correspond to
the gradient walk procedure when this local optimum is in
fact the fittest neighbor node. However, this conjecture is not
always true since the fittest node is not necessarily a local
optimum. The above assumption is even less robust for net-
work with large mean connectivity z.

Henceforth, we assume that the starting point of an adap-
tive walk is not a local optimum of the fitness landscape. In

the present underestimation of L̄ we also suppose that e−z

�1. In that case, the likelihood that the adaptive walk stops
in the first step is given by

P1 = 1 � ��
k=0

�

�1 − �1 − ��k� �
e−zzk

k! � ,

P1 = 1 − e−�z. �7�

The term �1− �1−��k� is the probability that at least one of
the neighboring nodes of the starting point S0 is a local op-
timum. The sum is taken over all possible values of connec-
tivity k of node S0. Now, the probability that the adaptive
walk stops in the second step is obtained through
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P2 = 1 � ��
k=0

�

�1 − ��k �
e−zzk

k! �
� ��

k=0

�

�1 − �1 − ��k�
e−zzk

k! � ,

P2 = e−�z � �1 − e−�z� = e−�z − e−2�z. �8�

The term e−�z is just the probability that none of the neigh-
bors of node S0 is a local optimum. The second term �1
−e−�z� is the chance that the second visited node S1 has at
least one local optimum in its neighborhood. In general, the
probability that adaptation stops at step n �stops at node Sn�
is simply given by

Pn = �e−�z�n−1 � �1 − e−�z� = e−�n−1��z − e−n�z. �9�

We estimate the mean walk length as

L̄u = �
n=0

�

nPn,

L̄u = �
n=0

�

n�e−�n−1��z − e−n�z� ,

L̄u = �
n=0

�

e−n =
e

e − 1
. �10�

To obtain L̄u, we have used �=1/z, which is the limiting
value of � for large z �see Eq. �6��.

C. Scale-free networks

Recent investigations show that such distinct systems as
the world-wide web �21� and scientific �22� and biochemical

networks �23,24� self-organize into a scale-free state �19�.
All those investigations claim that the probability Pk that a
given node has k edges follows a power-law like

Pk � k−	. �11�

Such systems are referred to as scale-free networks. The two
mechanisms which are responsible for the emergence of
scale-free patterns are the growth and preferential attachment
�19,21,25�. The former mechanism tell us that scale-free net-
works are created in a dynamical way. The second mecha-
nism means that news nodes are most likely attached to ver-
tices with higher connectivities. In the context of adaptive
walks, the study of scale-free networks is especially interest-
ing because of their appearance in natural networks �26,27�.
Recently, it has been verified that preferential attachment
governs the protein network evolution �26�. Doye has found
a scale-free character in the potential energy landscape �27�,
but in contrast to other scale-free networks where the topol-
ogy results from the dynamics of growth, the potential en-
ergy landscape is a static entity �28–31�. Actually a straight-
forward relation among the guiding forces responsible for
the appearance of scale-free patterns and the already wit-
nessed evolutionary forces in a biological context emerges if
we interpret natural selection as a preferential attachment
mechanism �32�. In our simulations, we generate scale-free
networks by means of the growth and preferential attachment
mechanisms �19,21�. These mechanisms generate scale-free
networks with exponent 	=3 when the number of nodes N
becomes infinitely large �21�.

III. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1 we show the density of local optima � as a
function of the mean connectivity z. In part �a� we plot the
simulation data for random graphs with fixed number of
nodes N=32 768. The straight line corresponds to the theo-
retical prediction of Eq. �6� for large z. We have observed a

FIG. 1. Density of local op-
tima as a function of the mean
connectivity z. In �a� we have the
results for random graphs and �b�
for scale-free networks. The data
points are the simulation data,
whereas the dashed lines corre-
spond to the fit according to �
�1/z. The simulation data are av-
erages taken over 100 distinct sets
of fitness values. The error bars
are smaller than the symbols.
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good agreement between theory and numerical simulations.
Part �b� of Fig. 1 displays the density of local optima as a
function of the mean connectivity z=2m �where m is the
minimum number of links of a given node� for scale-free
networks. We also observe that the simulation data are also
well described by ��1/z. These results suggest that the den-
sity of local optima is insensitive to the particular distribu-
tion of connectivities of the networks, but depends on their
mean connectivities only.

Figure 2 shows the mean length walk L̄ as a function of z.

For small z, we notice an abrupt increase of L̄ as z grows. For

random graphs �Fig. 2�a��, for one further augment z, L̄ ap-
proaches the asymptotic value e−1 which is represented by
the dotted line. In the same figure, the dashed line corre-

sponds to the underestimated mean length walk L̄u=e / �e
−1� �Eq. �10��. We check that for z=2 and 3, the simulation

results lie below the estimated value L̄u, which is actually
expected since we have assumed in the analytical calculation

of L̄u that e−z�1. We remark that for small z, the gradient
adaptive walk is performed by considering the percolating
cluster �17�. For instance, when z=2 only 79% of the nodes
belong to the giant cluster �18�, and so the effective size of
the network is smaller than N. When z
5, the simulation

data surpass L̄u and the disagreement L̄− L̄u increases with z,

up to z
50. Right away, L̄u underestimates the mean length

walk by about 9%. Interestingly, the asymptotic value of L̄

coincides exactly with Orr’s prediction for L̄ in hypercubes,

where L̄=e−1
1.72 steps. In part �b� of Fig. 2 we plot the

mean length walk L̄ for scale-free networks. Although we

notice that L̄ behaves in a similar way as in part �a�, the

asymptotic value of L̄ is higher than �e−1�. A possible ex-
planation for this fact is that in scale-free networks, the
nodes are most likely connected to hubs �highly connected
nodes�, and so the probability that a hub is a locally optimum

node decreases exponentially with increasing connectivity.
Figure 3 displays �fG= fglobal− f local, where fglobal denotes

the expected maximum value of a set of N random numbers,
and f local means the expected value of fitness of local optima
reached by the population. For uniformly distributed random
variable fglobal is simply N / �N+1�. Like the density of local
optima, �fG also decreases as 1/z and is not influenced by
the network topology, as we can infer from collapse of the
data points.

In summary, we have investigated the influence of the
topology of sequence space on the dynamical properties of
adaptive walks performed by single populations. We have
considered an uncorrelated fitness landscape and compare
our results for random graphs and scale-free networks with
those for regular lattice. For random graphs we present ana-

FIG. 2. Mean length walk L̄ as
a function of the mean connectiv-
ity z. The data points correspond
to the results from computer simu-
lations. The dotted line represents

L̄=e−1, whereas the dashed line
corresponds to the estimate in Eq.
�10�. In the figure, we have con-
sidered networks with N=32 768
nodes. In �a� we have the results
for random graphs and in �b� for
scale-free networks. The data
points correspond to averages
over 100 000 replicates. In �a� for
z
200 averages were taken over
500 000 replicates. The error bars
are smaller than the symbols.

FIG. 3. The quantity �fG as a function of the mean connectivity
z. The circles denote the results for random graphs, and the squares
denote data for scale-free networks. The dashed line represents the
best fitting according to �fG�1/z. The data points correspond to
averages over 100 000 replicates. The error bars are smaller than
the symbols.
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lytical expressions for the density of local optima and mean
length walk. We expect that these expressions together with
the results for hypercubes �10� will be useful for comparison
in future works on adaptive processes. Remarkably, we find
that the density of local optima does not depend on the par-
ticular form of the distribution of connectivities. Indeed, the
density of local optima decreases as 1/z, where z is the mean
connectivity of the network. For random graphs we have
determined exactly the dependence of the density � with z
and have also obtained an underestimated value for the mean

length walk. Interestingly, we have ascertained that the

asymptotic value of L̄, which corresponds to large z, is the
same as that in regular networks. However, we observe an
upper limit when dealing with scale-free networks.
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